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ABSTRACT 

The Keck Interferometer links the two 10m Keck Telescopes located atop Mauna Kea in Hawaii. It is the first 1Om 
class, fully A 0  equipped interferometer to enter operation. Further, it is the first large interferometer designed to be 
handed over from a design and implementation team to a separate operations team, and be used by astronomers who are 
not interferometer specialists. As such it offers unique challenges in reducing an extremely complex and powerful 
system to an apparently simple user interface, and providing a well engineered system that can be maintained by people 
who did not develop it. 

This paper gives an overview of the control system that has been implemented for the single baseline operation of the 
instrument, and indicates how this will be extended to allow control of the future modes of the instrument (nulling, 
differential phase and astrometry). 

The control system has several parts. One is for control of "slow" sub-systems, which is based in the EPICS 
architecture, already ubiquitous at the Keck Observatory. Another, used to control hard real time sub-systems, is based 
on a new infrastructure developed at JPL, programmed in C++, Java, and using COMA for communication. This 
infrastructure has been developed specifically with the problems of interferometric control in mind and is used in JPL's 
flight testbeds as well as the Keck Interferometer. Finally, a user interface and high level control layer is in development 
using a variety of tools including UML based modeling in the Rhapsody tool (using C++ and CORBA), Java, and TcYTk 
for prototyping. 
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1. INTRODUCTION 

1.1. Overview 
The Keck Interferometric Array, as proposed, would use Michelson combination among the two Keck 10m telescopes 
along with four proposed 1.8m outrigger telescopes. The two Kecks provide a baseline of 85 m in the NE direction. 
With the addition of the outriggers, a range of baselines from 30 m to 135 m could be provided. For highest efficiency, 
all of the telescopes are phased: the Kecks use adaptive optics, while the outriggers would use fast tiphilt correction. 
Cophasing among baselines is provided using active fringe tracking and active delay lines; for off-source cophasing, a 
dual-star module will be installed at each telescope to bring the light from the source and a cophasing reference to the 
beam combining lab. The back-end science instruments of the interferometer include two-way combiners at 1.5-2.4 pm 
for astrometry, traditional visibility science, and cophasing; a proposed multi-way imaging combiner at 1.5-5 pm; and a 
nulling combiner at 10 pn in development. The Keck Interferometer is the first 1Om class, fully A 0  equipped 
interferometer to enter operation and is described in detail by Colavita and Wizin~wich**~. The Keck Interferometer is 
an element in NASA's Origins Program'. 
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The science goals of the interferometer are the use of nulling interferometry to characterize zodiacal dust emission from 
nearby solar type stars as a precurser to the SIM and TPF planet finder missions (nulling mode); to detect hot Jupiters 
(Jovian sized planets in close orbit around their parent stars) using differential phase signals at varying detector 
wavelengths (DP mode); astrometric searches for planets down to Uranus mass around nearby stars (astrometry mode); 
and general purpose high resolution astronomical imaging of a variety of sources using the full array (imaging mode). 
For a detailed description of the science goals of the instrument see Colavita and Wizinowich’. 

1.2. Control system 
The control system for the Keck Interferometer is large and complicated. There are many parts and many interfaces, and 
it is being developed by two physically distant groups - JPL and WMKO, so there is ample potential for development of 
a system that is difficult to use and maintain. In addition, the system must be handed over from the development group 
(which for the interferometer itself, as opposed to telescope systems, is dominated by JPL personnel) to the operations 
group, which will contain none of the JPL developers. Further, the instrument must be of facility class, such that it may 
be used by astronomers who are not interferometry specialists. Thus, it is requirement that the instrument be, in fact, 
easy to use and maintain. In addition there are very tight requirements on the performance of the system to reach the 
challenging science goals of, for example, nulling detection of exo-zodiacal emission and differential phase 
measurements of hot Jupiters. These requirements are not easy to achieve. 

The main components of the control system are: 
Angle trackers, which keep the light from the telescopes falling on the entrance aperture to the fringe trackers, 
and keep the wavefronts that are being combined to form interference fringes parallel. 
Delay lines, which keep the optical path difference between any two telescope beams that are being combined 
the same to within very tight tolerances whilst tracking the moving delay cause by the sidereal motion of the 
target object. 
Metrology, which monitors and corrects for path length and tilt variations in the optical beam trains of the 
interferometer from the telescopes to the detectors 
Fringe trackers, which not only measure the fringe position and provide feed back to delay lines to maintain 
lock on the interference, but also provide the measurements for phase and visibility that form the science 
observations. 
Nulling and imaging cameras, which will measure the fringe quantities of interest to nulling and imaging 
science. 
Telescope system, being the telescope and dome control themselves, and also target acquisition, adaptive 
optics (AO) control, and coudt beam train control (particularly for off axis beam trains used for the secondary 
star feed). 

For most of these sub-systems, several copies of functionally identical, but differently configured versions of the sub- 
systems are used together. For example, in a full imaging mode deployment there would be twelve delay lines operating 
simultaneously. There are numerous interfaces between the different sub-systems leading to a complicated data flow in 
the instrument. For example, as mentioned above, the fringe trackers measure the position of the interference fringes 
formed by combining the light from two telescopes. This position is fed back to the delay lines so as to keep the center 
of the interference fringe packet on the beam combiner, to maintain the highest fringe visibility. As another example the 
angle trackers feed back to the A 0  systems to keep the target object aligned with the detectors. 

The tolerances on the performance of the sub-systems are very demanding. Servos must run at fast rates, for example 
the delay lines internally servo their positions against a metrology source at 5kHz. The angle trackers and fringe trackers 
need to read out their camera hardware at close to the maximum allowable rate to provide enough bandwidth for fringe 
tracking control and angle tracking control to overcome the variability induced by the earth’s atmosphere and the 
internal variations in the instrument (fringe tracker frames at up to 500Hz and angle tracker frames at up to 1OOHz).  The 
servo control must also be very precise. The fringe tracking must control the fringe position to much better than a 
wavelength of light (so to better than lOOnm or so), even though the delay lines are moving over 10s of meters during an 
observation. 

To successfully make science measurements with the instrument there must be a high degree of automation for the 
control system. This also naturally leads to a control system that is easy to use since the user need not have a detailed 



knowledge of the internal workings of the subsystems to achieve a set of science observations. The main reason for this 
automation requirement is that interferometry science requires high levels of careful calibration, thus we require: 
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Fast switching between taking science data and taking internal calibration data. 
Fast switching between science target objects and objects of known visibility and phase for external fringe 
calibration. 
Consistency of calibration processes from targets to calibrator objects and in set up of target and calibrators. 

Automated sequencing of sub-system operation within a subsystem. 
Automated sequencing of sub-systems for coordinated operation of subsystems. 
Automated sequencing of targets presented to the instrument. 
Automated optical alignments of system and sub-system optical elements 

These requirements demand automation at several levels: 

This last automation requirement arises because the interferometer has many optical elements in each beam train from 
telescope to detector (many 10s of elements), and the total optical path is very long (many 10s of meters). Thus, manual 
alignment would be too time consuming and also not of sufficient accuracy. 

2. DESIGN APPROACH 

2.1. Software 
The design approach taken for the interferometer control system was driven by the above complexities and requirements. 
In this section we give an overview of the thinking behind the current and planned implementations. 

At WMKO extensive use is already made of the EPICS4 control framework. Many observatory sub-systems, including 
telescope control, are written using EPICS, and there are additional tool sets developed by WMKO which are layered on 
top of EPICS, for example a keyword interface layer (KTL). There thus exists a large body of expertise and knowledge 
at WMKO in the use of EPICS and many control systems are built on thoroughly tested device control modules built in 
EPICS. It was therefore decided wherever possible, to make use of existing EPICS developments at WMKO for control 
of interferometer sub-systems, and to use WMKO expertise to extend existing control systems where necessary to 
control interferometer sub-systems that are similar to these existing control systems. This not only builds on existing 
infrastructure, but also helps the handover process as WMKO personnel are already familiar with the details of control 
systems for these interferometer elements, even if they were developed by JPL personnel. Care was taken to also make 
the development and deployment environment of EPICS systems at JPL adhere to WMKO policy and procedures. 

Much of the interferometer’s control system must run at rates too high to be implemented using EPICS. For these parts 
of the system we chose to implement control using the JPL developed RTC tool set5. The use of this tool set is described 
more fully below, however, here we note that the tool set allows a modular approach to design of the control system. 
We have many subsystems that are very similar in concept (for example, angle trackers and fringe trackers both read out 
a camera at high rate, compute a target, and send the target to another subsystem for actuation); we have many copies of 
the same type of subsystem, as noted above for example for the 12 delay lines needed in imaging mode. The object 
oriented nature of the RTC tool set allows easy modularisation of the elements of the control system to achieve this 
repeatability in design and in instantiation. 

In addition to being implemented as a modular system, the control system is also very hierarchical. This particularly 
applies to the sequencing type of control for the system and for the sub-systems. Sequencing occurs at all levels within 
in the control system: At the lowest level, the sub-systems sequence their internal states based on low level input from 
sensors. For example, is there light in the detector, then start to track the fringes. At an intermediate level, sub-systems 
must be coordinated to act in concert. For example the observational target must be acquired by the angle trackers 
before the fringe trackers can try to track fringes. Also, the control system must cycle through various states ofthe sub- 
systems to achieve an observing sequence with the required internal calibrations. Finally at the highest level the control 
system must cycle through a predefined list of targets and calibration sources to achieve scientifically interesting 
measurements. The hierarchical nature of this sequencing allows us to implement it in a modular and hierarchical way, 
with separate control objects for each level of the hierarchy, linked by common format interfaces. This allows for 



separate development and testing, and implementation of prototypes for various levels along side more fully developed 
systems at other levels. 

For sub-systems developed within the EPICS framework, we also employed hierarchical development, layering 
sequencers on top of collections of individual sub-system modules, to implement, for example, the auto-alignment 
system. 

We made extensive use of prototyping and iterative development of sub-systems and sequencers. Sub-systems are 
developed as stand alone modules, then interfaced to other subsystems and sequencers. They are also extended or 
redesigned when further development of the instrument is instigated, for example, development of the precision modes 
of nulling and differential phase from basic control achieved fro visibility science. Sequencing almost always was 
implemented first in scripting languages, allowing rapid prototyping and development6. 

2.2. Hardware 
The above approach to software development: capitalizing on WMKO experience and making systems modular for ease 
of development and maintenance was also repeated for hardware. As far as possible we developed the control systems 
using hardware already in use at WMKO, or already in their planned upgrade path. We also repeated use of hardware 
between EPICS and RTC systems. This was fortunately aided by the fact that similar hardware and development 
environments to those previously used by WMKO were already in use at JPL for test bed development of the RTC tool 
kit. Thus, all our subsystems are deployed as Power PC control in a VME environment using the VxWorks operating 
system. We make extensive use of Industry Pack modules for D to A and A to D, and for digital IO, for example, and 
have reused and developed WMKO systems based on PMAC intelligent controllers. Many of the physical actuators 
used in the interferometer are identical to those already in use at WMKO, Newport 850G positioners, for example. 

3. SUB-SYSTEM CONTROL 

3.1. RTC controlled “fast” sub-systems 
All the hard real time sub-systems in the interferometer control system that must run at “fast” rates (i.e. more than about 
1OOHz) are built using the JPL developed RTC control system5. This control system development tool has been 
developed at JPL as part of the interferometer development and test bed program, of which the Keck interferometer 
project is part. The 
framework has been developed using C++, and Java, in both the VxWorks real time OS, and UNIX and Linux OS 
regimes. The framework is inherently object oriented. 

Thus, the framework has been developed with interferometer control especially in mind. 

The framework contains the following parts: 

0 

Real time control system frameworks in C++ for VxWorks. The frameworks include real time state machines, 
device drivers, and predefined interfaces for commanding and telemetry. 
Servers for distributing telemetry in C++ under UNIX/Linux and an archiving system for capturing telemetry to 
disk, also in C++ for UNIX/Linux. 
An extensive relational data base system for configuration management, including a java based GUI, used to 
maintain configurable parameters for the real time systems making for easy deployment of multiple copies of 
sub-system controllers with differently configured properties. Reconfiguration can occur at run time, and even 
“on the fly”. 
A flexible engineering GUI development tool kit developed in Java for UNIWLinuflindows, allowing on the 
fly configurable textual and graphical display of telemetry, and easy implementation of graphical command 
interfaces. 
Timing and scheduling control mechanisms and hardware for the real time processes. 

In the following sub-sections we give some details of the real time sub-systems developed for the Keck Interferometer 
using this framework. Each description is for a single instance of each sub-system, of which there are generally several 



in the interferometer system. All sub-systems are controlled independently by a single instance of their controlling 
software system, loaded with parameters from the configuration data base. 

3.2. Delay lines 
The delay lines are used to provide variable optical path length in each beam train from telescope to detectors, in 
response to sidereal motion of the target objects, and to provide an actuator for the fiinge tracker system. They are 
implemented as a 4 stage nested servo system (similar to the delay lines used at the Palomar Testbed Interferometer7): an 
inner loop controlling a fast PZT mounted small mirror, two intermediate loops controlling voice coils actuating entire 
optics assemblies, and an outer loop controlling a micro-stepper motor that drives the whole assembly along rails. The 
inner loop responds to feed back error signals measuring the actual position of the assembly along its rail path using 
laser metrology, with a bandwidth of about 500Hz. Outer loops respond to this error at progressively lower bandwidths. 
Various targets are provided for the position of the assembly with regard to the laser metrology: a sidereal target from a 
higher level sequencer; a “continuous term” metrology signal, measuring the total path length of the beam train of which 
this delay line forms a part, from the fringe tracker to the telescope; and a measurement of the change in optical path 
length caused by motion of the telescope optics, measured using accelerometers mounted on the telescope. The closed 
loop target from the fringe tracker is either an actual error signal from a measurement of fringe position, or a search 
target if the tracker detects no fringes. 

In common with all the real time control sub-systems, the RTC framework has been used to implement a state machine 
that allows the delay lines to be either “idle” (measuring sensor input, but not moving closed loop), or tracking. In 
tracking, the sub-system can be in a variety of states, in this case: slewing (moving rapidly to a new target), or locked 
(closed loop tracking on error signal). The RTC framework allows easy implementation of the state machine that 
defines these states and controls transition between them based on user input and sensor values. 

3.3. Fringe trackers 
The fringe tracker is implemented as two separate processes running on the same CPU. One process controls the camera 
readout, and one performs the servo calculations. The camera readout process is very simple, loading the appropriate 
clock pattern to read out the array and setting up the rate at which the pattern is applied, then placing the results of the 
readout into local memory. The servo process obtains the read out pixels from the camera, and sends a calculated target 
to the delay line sub-systems to keep the fringe packet centered on the beam combiner. The calculation involves 
determining a fringe phase from a white light pixel fi-om one output of the beam combiner, and a fringe position group 
delay determined from a dispersed spectrum from the other output, then combining these two. Details of this process 
can be found in Vashist’. The state machine for the fringe tracker allows for idle and tracking states. In tracking the 
process can be searching (sending a linear spiral search target to the delay lines instead of an error signal), semi-lock 
(confirming the existence of suspected fringes), or lock (confirmed detection of fringes, and servoing delay lines). 

3.4. Angle trackers 
The angle trackers also have a camera readout process and a servo process. The camera readout process is virtually 
identical to that of the fringe tracker. The servo process determines a position for the target image on the camera and 
calculates an error signal to be sent to the tip-tilt metrology sub-system to keep the target centered on the detector. The 
target is determined using either a centroid algorithm, in initial wide angle mode, or a quad cell algorithm once the target 
has been acquired. The state machine allows for idle and tracking states, and for search, semi-lock and lock in tracking. 
In addition to providing an error signal to the tip-tilt system, the angle tracker also offloads the absolute tip-tilt mirror 
position to the telescope tracking systems (in the case of the Keck telescopes, this means the A 0  system) at a lower rate 
than the main servo to keep the mirrors close to center. 

3.5. Tip-tilt metrology 
The tip-tilt metrology sub-system performs a higher bandwidth control of the internal beam train tip-tilt alignment than 
can be achieved by the angle tracker. The angle tracker works using detected starlight from the telescope, so is limited 
by the photon rate of the object. The tip-tilt sub-system uses a laser beacon near the beam combiner at the fr-inge tracker 
to illuminate a detector near the telescope at the other end of the beam train. Tip and tilt are calculated from the laser 



spot position on the detector, and fed back to a control mirror to keep the spot immobile. Targets are also added in from 
the angle trackers as mentioned above to keep the star centered on its detector (and hence ensure that light is correctly 
falling on the fringe trackers). The state machine for this sub-system uses the idle and track states. In the track state the 
state machine is very simple, allowing for a lock state if there is laser light falling on the detector. 

Telescope 
sequencers 

4. SEQUENCING 
The sub-systems described above run in hard real time, controlled by hardware clocks and with scheduling that requires 
the tasks complete in less time than required by the servo rate. This ensures optimum performance of the closed loop 
servos that are the primary concern of these sub-systems. These systems interface to a higher level of control that does 
not have to be run in hard real time, and thus has not been implemented in the RTC frame work. We refer to this level of 
control as sequencing, and it satisfies several requirements for the interferometer control system as indicated above: 
making the various subsystems act in concert, controlling internal calibrations for a single target object, and sequencing 
through a set of science and calibrator target objects. 
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As indicated above the sequencing systems are implemented as a hierarchical structure. Fig. 1 shows the hierarchy of 
the sequencing components. The subsystem sequencers are instantiated as one per real time sub-system, and control 
their individual subsystem via commands and monitored telemetry. They ensure that the more generic commands 
received from the interferometer sequencer are correctly interpreted in the command set of the real time sub-systems, 
and that those systems enter the expected state as a consequence of the commands. They allow for faulted states if the 
sub-systems do not perform in the expected manner. The interferometer sequencer contains several modules that 
perform the correct coordination of the real time subsystems (and the telescope systems) to achieve a science 
observation, including sequencing through internal calibrations. These internal calibrations include commands to “slow” 
subsystems implemented in EPICS (e.n. commands to close shutters) as well as “fast” systems implemented in RTC. 
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Fig. 1 Sequencing hierarchy 

At the highest level the target list sequencer controls the interferometer sequencer and performs the function oL cycling 
between science and calibration targets based on a target list supplied by planning tools’. 

The interferometer sequencer, sub-system sequencers and target list sequencer are being implemented using the 
“Rhapsody” tool from I-Logix”. This is a UML based tool with VPE interface which generates C++ code in an object 
oriented frame work. As mentioned, prototyping for sequencers is performed using scripting languages, and at present 
the target sequencer is implemented in Tcl/Tk. Telescope sequencers and telescope subsystem sequencers are being 



implemented in the EPICS state notation language frame work. All these sequencers are currently implemented under 
the UNIX operating system. 

5. AUTO-ALIGNMENT 
As indicated above, an optical system as complicated as the Keck interferometer must have an auto-alignment system to 
allow quick reconfiguration, alignment checks and improvement during observations, improved accuracy and 
repeatability of alignment and improved human interface to optical alignment where the optics are located in a hostile 
environment (14000ft altitude). Details of the auto-alignment system are given by Van Belle, et al.". 

The auto-alignment control system is implemented in a very similar manner to the main instrument control system. 
Individual sub-systems (e.g. 2 axis mirror controllers) are implemented in EPICS, often with self contained sequencers 
for automated start up, slew to position, etc. These systems are real time and run under the VxWorks operating system. 
At a higher level, there are sub-system sequencers, in this case implemented in the EPICS State Notation Language 
(SNL) frame work, controlling the external command and telemetry interface. Above these is a further layer of 
sequencing that controls related subsystems to achieve auto-alignment on a single optic, again in EPICS SNL. A typical 
sequence involves turning on a stimulus, detecting a centroid for a target on a camera, and servoing the optic position to 
center the target. At the highest level, a sequencer is provided to step through all the optical elements in a beam train (or 
all those that need to be touched after, say, a reconfiguration) and perform an alignment. At present this top level 
sequencing is implemented as a prototype in Tclmk, but will shortly be ported to Rhapsody, with a java GUI. 

6. INTERFACE CONTROL 
It can be seen from the foregoing that the total number of interfaces in the interferometer control system is large, and that 
they are potentially of a diverse nature. There is inter-communication between systems running under different 
operating systems - VxWorks and UNIXLinux, and systems built using two very dissimilar frame works - RTC and 
EPICS, and there are a variety of languages used - C++, C, java, scripting languages. However, the interfaces can be 
placed into three groups, as described in the following three paragraphs. 

As well as having a native interface called channel access, the EPICS systems in use at WMKO have a legacy 
communications layer (KTL) based on keywords for both command and telemetry. TclRk has been extended to 
interface to KTL keywords. This layer is well engineered and flexible, allowing easy communication across operating 
systems and between CPUs, so we wished to continue to use it in the interferometer EPICS systems. Thus, all the 
interfaces between EPICS systems in the interferometer, and between interferometer EPICS systems and telescope 
EPICS systems are implemented in the KTL frame work. 

The RTC sub-systems at the real time (VxWorks) level (e.g. delay lines, fi-inge tracker) have a built in inter-processor 
communications protocol (IPC) that is used, for example, for communication of fringe tracker targets to the delay lines. 
IPC works between CPUs on the same VME back plane, and between CPUs in separate VME crates provided the 
physical distance is not large (this is important in the interferometer, where the CPUs for the interferometer are far from 
those controlling telescope systems). 

For communication between the non-real time parts of RTC (e.g. GUIs, configuration data base), and from these parts to 
the real time sub-systems, a communications layer based on CORBA is provided. CORBA is inherently object oriented, 
and so fits well in the RTC design philosophy. CORBA and its application to RTC is beyond the scope of this article 
(see Lockhart' for more information), but CORBA is designed to make communication interfaces more transparent by 
confining user accessible parts of the interface to a C++ like definition called IDL. CORBA ORBS are available for all 
the languages (C++, Java, Tcl, Python) and all the operating systems (VxWorks, Unifiinux) in use in the 
interferometer control system. We were thus able to construct a common interface based on IDL definitions for all RTC 
based systems. For example, one definition of telemetry exists that is used by all RTC based systems to report collected 
science data, systems health and system status. Use of CORBA thus makes interfacing between heterogeneous systems 
more straightforward and helps solve the interface complexity issues for the RTC based systems. 

Thus, controlling interface complexity in the interferometer i.s largely reduced to providing a simple interface between 
CORBA and keyword based systems. Fortunately, much of this interface can also be confined to the sequencer level, 



and specifically most communication can be conveniently routed through the interferometer sequencer without loss of 
performance or introduction of data flow complexity. We have thus provided both a CORBA based interface layer and a 
keyword based interface layer as parts of the Rhapsody frame work used to construct the interferometer sequencer. 
Thus, for example, this sequencer can command RTC systems based on C O M A  method calls, and at the same time 
send keyword writes containing target information to telescope sequencers. No direct translation of keyword to CORBA 
systems is provided as the information needs in all cases to be processed through the sequencer, for it to provide its 
sequencing functionality. 

There are a very few cases where it does not make sense to route commands and data passing between RTC and EPICS 
based systems through the sequencer layer. An example is the mirror position offload commands generated by the angle 
tracker RTC sub-system being sent to the EPICS based A 0  sub-system. In all these cases the interface is very simple, 
requiring only that a simple position, or position pair be passed (in the form of a primitive integer or float type) from 
CORBA to KTL or vice versa. In these cases we have provided a simple thin translation layer to implement the 
communication. These layers are implemented on UNIX to avoid complications of scheduling in VxWorks, and are 
generic enough to handle the simple interface requirements of all these special cases. 

7. STATUS 
At the present time the control system for the Keck Interferometer has been developed to the extent needed to perform 
traditional visibility science measurements using the two Keck telescopes. The following sub-systems have been 
implemented: two delay lines (one for each beam train), two angle trackers, two tip-tilt metrology systems, and one 
fringe tracker. In addition, sequencing of these sub-systems has been implemented and this sequencer interfaces to the 
telescope systems through a telescope sequencer to provide target information. Constant term metrology is used to 
measure the total path length variations along the whole beam train, and accelerometers are used to do likewise for the 
telescope optics. All optical elements that are routinely moved during set up, alignment, or calibrations (e.g. mirrors, 
shutters, retro-reflectors, etc) have been automated and are controlled by either the interferometer or auto-alignment 
sequencers, such that the interferometer can be run entirely remotely during normal operation. Extensive user interfaces 
have been provided in java and Tcl/Tk that also allow easy remote operation. Indeed the full interferometer has often 
been operated in internal calibration mode from JPL during day time testing. 

Near term developments include: automated control of the Long Delay Lines to provide larger amounts of (fixed) optical 
path differencing to allow extended sky coverage, and inclusion of these into the auto-alignment system; development of 
the nulling beam combiner; and development of the differential phase mode of the instrument. 

ACKNOWLEDGEMENTS 

The work reported here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under 
contract with the National Aeronautics and Space Administration, and at the W. M. Keck Observatory, California 
Association for Research in Astronomy. Funding for the Keck Interferometer is provided by the National Aeronautics 
and Space Administration. 

REFERENCES 

1. See http://huey.jpl.nasa.gov/keck/, http://planetquest.jpl.nasa.gov/, http://origins.jpl.nasa.gov/ 
2. 

3. 

4. See http://mesa53.lanl.gov/lansce8/EPICS 
5. 
6. 
7. 

M. M. Colavita, and P. L. Wizinowich, “Keck Interferometer: progress report”, in Interferometry in Optical 
Astronomy, Proc. SPIE, 4006,2000. 
M. M. Colavita, and P. L. Wizinowich, “Keck Interferometer update”, in Interferometry in Optical Astronomy 11, 
Proc. SPIE, 4838,2002 (this conference series). 

T. Lockhart, “RTC: a distributed real-time control system toolkit”, Proc. SPIE, 4848,2002 (this conference). 
L. Reder, et al., “Using scripting languages in optical interferometry”, Roc. SPIE, 4848, 2002 (this conference). 
M. M. Colavita, et al., ‘The Palomar testbed interferometer”, Ap.J., 510, pp. 505-521, 1999 

http://huey.jpl.nasa.gov/keck
http://planetquest.jpl.nasa.gov
http://origins.jpl.nasa.gov
http://mesa53.lanl.gov/lansce8/EPICS


8. 

9. See http://isc.caltech.edu/KISupport. 

G. Vasisht et al., “Performance and verification of the Keck interferometer fringe detection and tracking system: 
FATCAT”, in Interferometry in Optical Astronomy 11, Roc. SPIE, 4838,2002 (this conference series). 

10. See httv://www.ilogix.com. 
11. G.T. Van Belle, et al., “Keck interferometer autoaligner”, in Interferometry in Optical Astronomy 11, Roc. SPIE, 

4838, 2002 (this conference series). 

http://isc.caltech.edu/KISupport
http://httv://www.ilogix.com


overview of the control system for the Keck Interferometer 
A. J. Booth*", G .  Eychaner*", E. Hovland*a, R. L. Johnson Jr.*a, w. Lupton**b, A. NiesSner*a, D. Palmer*a, L. J .  Reder"", A. C. Rudeen**b, R. F smythe *a, K. TsUbota**b 

a Jet propulsion Laboratory, California Institute of Technology, bW. M. Keck Observatory, California 
Association for Research in Astronomy 

ABSTRACT 

1. INTRODUCTION 



Overview of the control system for the Keck Interferometer 
A. J. Booth*", G. Eychaner*", E. Hovland*", R. L. Johnson Jr.*", W. Lupton**b, A. Niessner*", D. 

Palmer*", L. J. Reder*a, A. C. Rudeen**b, R. F Smythe*", K. Tsubota**b 
"Jet Propulsion Laboratory, California Institute of Technology, bW. M. Keck Observatory, California 

Association for Research in Astronomy 

ABSTRACT 

The Keck Interferometer links the two 10m Keck Telescopes located atop Mauna Kea in Hawaii. It is the first 1Om 
class, fully A 0  equipped interferometer to enter operation. Further, it is the first large interferometer designed to be 
handed over from a design and implementation team to a separate operations team, and be used by astronomers who are 
not interferometer specialists. As such it offers unique challenges in reducing an extremely complex and powerful 
system to an apparently simple user interface, and providing a well engineered system that can be maintained by people 
who did not develop it. 

This paper gives an overview of the control system that has been implemented for the single baseline operation of the 
instrument, and indicates how a i s  will be extended to allow control of the future modes of the instrument (nulling, 
differential phase and astrometry). 

The control system has several parts. One is for control of "slow" sub-systems, which is based in the EPICS 
architecture, already ubiquitous at the Keck Observatory. Another, used to control hard real time sub-systems, is based 
on a new infrastructure developed at JPL, programmed in C++, Java, and using CORBA for communication. This 
infrastructure has been developed specifically with the problems of interferometric control in mind and is used in JPL's 
flight testbeds as well as the Keck Interferometer. Finally, a user interface and high level control layer is in development 
using a variety of tools including UML based modeling in the Rhapsody tool (using C++ and COMA), Java, and Tcl/Tk 
for prototyping. 

Keywords: Interferometry, control system, real time control 

1. INTRODUCTION 

1.1. Overview 
The Keck Interferometric Array, as proposed, would use Michelson combination among the two Keck 10m telescopes 
along with four proposed 1.8m outrigger telescopes. The two Kecks provide a baseline of 85 m in the NE direction. 
With the addition of the outriggers, a range of baselines from 30 m to 135 m could be provided. For highest efficiency, 
all of the telescopes are phased: the Kecks use adaptive optics, while the outriggers would use fast tip/tilt correction. 
Cophasing among baselines is provided using active fringe tracking and active delay lines; for off-source cophasing, a 
dual-star module will be installed at each telescope to bring the light from the source and a cophasing reference to the 
beam combining lab. The back-end science instruments of the interferometer include two-way combiners at 1.5-2.4 pn 
for astrometry, traditional visibility science, and cophasing; a proposed multi-way imaging combiner at 1.5-5 p; and a 
nulling combiner at 10 pn in development. The Keck Interferometer is the first 1Om class, fully A 0  quipped 
interferometer to enter operation and is described in detail by Colavita and Wizinowichz3. The Keck Interferometer is 
an element in NASA's Origins Program'. 
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4800 Oak Grove Drive, Pasadena, CA 91 109; **ktsubota@keck.hawaii.edu; phone 1 808 885 7887; fax 1 808 885 4464; 
W. M. Keck Observatory, 65-1 120 Mamalahoa Highway, Kamuela, HI 96743 



The science goals of the interferometer are the use of nulling interferometry to characterize zodiacal dust emission from 
nearby solar type stars as a precurser to the SIM and TPF planet finder missions (nulling mode); to detect hot Jupiters 
(Jovian sized planets in close orbit around their parent stars) using differential phase signals at varying detector 
wavelengths (DP mode); astrometric searches for planets down to Uranus mass around nearby stars (astrometry mode); 
and general purpose high resolution astronomical imaging of a variety of sources using the full array (imaging mode). 
For a detailed description of the science goals of the instrument see Colavita and Wizinowich*. 

1.2. Control system 
The control system for the Keck Interferometer is large and complicated. There are many parts and many interfaces, and 
it is being developed by two physically distant groups - JPL and WMKO, so there is ample potential for development of 
a system that is difficult to use and maintain. In addition, the system must be handed over from the development group 
(which for the interferometer itself, as opposed to telescope systems, is dominated by JPL personnel) to the operations 
group, which will contain none of the JPL developers. Further, the instrument must be of facility class, such that it may 
be used by astronomers who are not interferometry specialists. Thus, it is requirement that the instrument be, in fact, 
easy to use and maintain. In addition there are very tight requirements on the performance of the system to reach the 
challenging science goals of, for example, nulling detection of exo-zodiacal emission and differential phase 
measurements of hot Jupiters. These requirements are not easy to achieve. 

The main components of the control system are: 
Angle trackers, which keep the light from the telescopes falling on the entrance aperture to the fringe trackers, 
and keep the wavefronts that are being combined to form interference fringes parallel. 
Delay lines, which keep the optical path difference between any two telescope beams that are being combined 
the same to within very tight tolerances whilst tracking the moving delay cause by the sidereal motion of the 
target object. 
Metrology, which monitors and corrects for path length and tilt variations in the optical beam trains of the 
interferometer from the telescopes to the detectors 
Fringe trackers, which not only measure the fringe position and provide feed back to delay lines to maintain 
lock on the interference, but also provide the measurements for phase and visibility that form the science 
observations. 
Nulling and imaging cameras, which will measure the fringe quantities of interest to nulling and imaging 
science. 
Telescope systems, being the telescope and dome control themselves, and also target acquisition, adaptive 
optics (AO) control, and coude beam train control (particularly for off axis beam trains used for the secondary 
star feed). 

For most of these sub-systems, several copies of functionally identical, but differently configured versions of the sub- 
systems are used together. For example, in a full imaging mode deployment there would be twelve delay lines operating 
simultaneously. There are numerous interfaces between the different sub-systems leading to a complicated data flow in 
the instrument. For example, as mentioned above, the fringe trackers measure the position of the interference fringes 
formed by combining the light from two telescopes. This position is fed back to the delay lines so as to keep the center 
of the interference fringe packet on the beam combiner, to maintain the highest fringe visibility. As another example the 
angle trackers feed back to the A 0  systems to keep the target object aligned with the detectors. 

The tolerances on the performance of the sub-systems are very demanding. Servos must run at fast rates, for example 
the delay lines internally servo their positions against a metrology source at 5kHz. The angle trackers and fringe trackers 
need to read out their camera hardware at close to the maximum allowable rate to provide enough bandwidth for fringe 
tracking control and angle tracking control to overcome the variability induced by the earth’s atmosphere and the 
internal variations in the instrument (fringe tracker frames at up to 500Hz and angle tracker frames at up to 1OOHz). The 
servo control must also be very precise. The fringe tracking must control the fringe position to much better than a 
wavelength of light (so to better than lOOnm or so), even though the delay lines are moving over 10s of meters during an 
observation. 

To successfully make science measurements with the instrument there must be a high degree of automation for the 
control system. This also naturally leads to a control system that is easy to use since the user need not have a detailed 



knowledge of the internal workings of the subsystems to achieve a set of science observations. The main reason for this 
automation requirement is that interferometry science requires high levels of careful calibration, thus we require: 

0 

0 

0 

0 

Fast switching between taking science data and taking internal calibration data. 
Fast switching between science target objects and objects of known visibility and phase for external fringe 
calibration. 
Consistency of calibration processes from targets to calibrator objects and in set up of target and calhrators. 

Automated sequencing of sub-system operation within a subsystem. 
Automated sequencing of sub-systems for coordinated operation of subsystems. 
Automated sequencing of targets presented to the instrument. 
Automated optical alignments of system and sub-system optical elements 

These requirements demand automation at several levels: 

This last automation requirement arises because the interferometer has many optical elements in each beam train from 
telescope to detector (many 10s of elements), and the total optical path is very long (many 10s of meters). Thus, manual 
alignment would be too time consuming and also not of sufficient accuracy. 

2. DESIGN APPROACH 

2.1. Software 
The design approach taken for the interferometer control system was driven by the above complexities and requirements. 
In this section we give an overview of the thinking behind the current and planned implementations. 

At WMKO extensive use is already made of the EPICS4 control framework. Many observatory sub-systems, including 
telescope control, are written using EPICS, and there are additional tool sets developed by WMKO which are layered on 
top of EPICS, for example a keyword interface layer (KTL). There thus exists a large body of expertise and knowledge 
at WMKO in the use of EPICS and many control systems are built on thoroughly tested device control modules built in 
EPICS. It was therefore decided wherever possible, to make use of existing EPICS developments at WMKO for control 
of interferometer sub-systems, and to use WMKO expertise to extend existing control systems where necessary to 
control interferometer sub-systems that are similar to these existing control systems. This not only builds on existing 
infrastructure, but also helps the handover process as WMKO personnel are already familiar with the details of control 
systems for these interferometer elements, even if they were developed by JPL personnel. Care was taken to also make 
the development and deployment environment of EPICS systems at JPL adhere to WMKO policy and procedures. 

Much of the interferometer’s control system must run at rates too high to be implemented using EPICS. For these parts 
of the system we chose to implement control using the JPL developed RTC tool set5. The use of this tool set is described 
more fully below, however, here we note that the tool set allows a modular approach to design of the control system. 
We have many subsystems that are very similar in concept (for example, angle trackers and fringe trackers both read out 
a camera at high rate, compute a target, and send the target to another subsystem for actuation); we have many copies of 
the same type of subsystem, as noted above for example for the 12 delay lines needed in imaging mode. The object 
oriented nature of the RTC tool set allows easy modularisation of the elements of the control system to achieve this 
repeatability in design and in instantiation. 

In addition to being implemented as a modular system, the control system is also very hierarchical. This particularly 
applies to the sequencing type of control for the system and for the sub-systems. Sequencing occurs at all levels within 
in the control system: At the lowest level, the sub-systems sequence their internal states based on low level input from 
sensors. For example, is there light in the detector, then start to track the fiinges. At an intermediate level, sub-systems 
must be coordinated to act in concert. For example the observational target must be acquired by the angle trackers 
before the fringe trackers can try to track fiinges. Also, the control system must cycle through various states of the sub- 
systems to achieve an observing sequence with the required internal calibrations. Finally at the highest level the control 
system must cycle through a predefined list of targets and calibration sources to achieve scientifically interesting 
measurements. The hierarchical nature of this sequencing allows us to implement it in a modular and hierarchical way, 
with separate control objects for each level of the hierarchy, linked by common format interfaces. This allows for 



separate development and testing, and implementation of prototypes for various levels along side more fully developed 
systems at other levels. 

For sub-systems developed within the EPICS framework, we also employed hierarchical development, layering 
sequencers on top of collections of individual sub-system modules, to implement, for example, the auto-alignment 
system. 

We made extensive use of prototyping and iterative development of sub-systems and sequencers. Sub-systems are 
developed as stand alone modules, then interfaced to other subsystems and sequencers. They are also extended or 
redesigned when further development of the instrument is instigated, for example, development of the precision modes 
of nulling and differential phase from basic control achieved fro visibility science. Sequencing almost always was 
implemented first in scripting languages, allowing rapid prototyping and development6. 

2.2. Hardware 
The above approach to software development: capitalizing on WMKO experience and making systems modular for ease 
of development and maintenance was also repeated for hardware. As far as possible we developed the control systems 
using hardware already in use at WMKO, or already in their planned upgrade path. We also repeated use of hardware 
between EPICS and RTC systems. This was fortunately aided by the fact that similar hardware and development 
environments to those previously used by WMKO were already in use at JPL for test bed development of the RTC tool 
kit. Thus, all our subsystems are deployed as Power PC control in a VME environment using the VxWorks operating 
system. We make extensive use of Industry Pack modules for D to A and A to D, and for digital IO, for example, and 
have reused and developed WMKO systems based on PMAC intelligent controllers. Many of the physical actuators 
used in the interferometer are identical to those already in use at WMKO, Newport 850G positioners, for example. 

3. SUB-SYSTEM CONTROL 

3.1. RTC controlled “fast” sub-systems 
All the hard real time sub-systems in the interferometer control system that must run at “fast” rates (i.e. more than about 

’ 1OOHz) are built using the JPL developed RTC control system5. This control system development tool has been 
developed at JPL as part of the interferometer development and test bed program, of which the Keck interferometer 
project is part. The 
framework has been developed using C++, and Java, in both the VxWorks real time OS, and UNIX and Linux OS 
regimes. The framework is inherently object oriented. 

Thus, the framework has been developed with interferometer control especially in mind. 

The framework contains the following parts: 
0 

0 

Real time control system frameworks in C++ for VxWorks. The frameworks include real time state machines, 
device drivers, and predefined interfaces for commanding and telemetry. 
Servers for distributing telemetry in C++ under UNIX/Linux and an archiving system for capturing telemetry to 
disk, also in C++ for UNIXninux. 
An extensive relational data base system for configuration management, including a Java based GUI, used to 
maintain configurable parameters for the real time systems making for easy deployment of multiple copies of 
sub-system controllers with differently configured properties. Reconfiguration can occur at run time, and even 
“on the fly”. 
A flexible engineering GUI development tool kit developed in Java for UNIX/Linux/Windows, allowing on the 
fly configurable textual and graphical display of telemetry, and easy implementation of graphical command 
interfaces. 
Timing and scheduling control mechanisms and hardware for the real time processes. 

0 

In the following sub-sections we give some details of the real time sub-systems developed for the Keck Interferometer 
using this framework. Each description is for a single instance of each sub-system, of which there are generally several 



in the interferometer system. All sub-systems are controlled independently by a single instance of their controlling 
software system, loaded with parameters from the configuration data base. 

3.2. Delay lines 
The delay lines are used to provide variable optical path length in each beam train from telescope to detectors, in 
response to sidereal motion of the target objects, and to provide an actuator for the fringe tracker system. They are 
implemented as a 4 stage nested servo system (similar to the delay lines used at the Palomar Testbed Interferometer’): an 
inner loop controlling a fast PZT mounted small mirror, two intermediate loops controlling voice coils actuating entire 
optics assemblies, and an outer loop controlling a micro-stepper motor that drives the whole assembly along rails. The 
inner loop responds to feed back error signals measuring the actual position of the assembly along its rail path using 
laser metrology, with a bandwidth of about 500Hz. Outer loops respond to this error at progressively lower bandwidths. 
Various targets are provided for the position of the assembly with regard to the laser metrology: a sidereal target from a 
higher level sequencer; a “continuous term” metrology signal, measuring the total path length of the beam train of which 
this delay line forms a part, from the fringe tracker to the telescope; and a measurement of the change in optical path 
length caused by motion of the telescope optics, measured using accelerometers mounted on the telescope. The closed 
loop target from the fringe tracker is either an actual error signal from a measurement of fringe position, or a search 
target if the tracker detects no fringes. 

In common with all the real time control sub-systems, the RTC framework has been used to implement a state machine 
that allows the delay lines to be either “idle” (measuring sensor input, but not moving closed loop), or tracking. In 
tracking, the sub-system can be in a variety of states, in this case: slewing (moving rapidly to a new target), or locked 
(closed loop tracking on error signal). The RTC framework allows easy implementation of the state machine that 
defines these states and controls transition between them based on user input and sensor values. 

3.3. Fringe trackers 
The fringe tracker is implemented as two separate processes running on the same CPU. One process controls the camera 
readout, and one performs the servo calculations. The camera readout process is very simple, loading the appropriate 
clock pattern to read out the array and setting up the rate at which the pattern is applied, then placing the results of the 
readout into local memory. The servo process obtains the read out pixels from the camera, and sends a calculated target 
to the delay line sub-systems to keep the fringe packet centered on the beam combiner. The calculation involves 
determining a fringe phase from a white light pixel from one output of the beam combiner, and a fringe position group 
delay determined from a dispersed spectrum from the other output, then combining these two. Details of this process 
can be found in Vashist*. The state machine for the fringe tracker allows for idle and tracking states. In tracking the 
process can be searching (sending a linear spiral search target to the delay lines instead of an error signal), semi-lock 
(confirming the existence of suspected fringes), or lock (confirmed detection of fringes, and servoing delay lines). 

3.4. Angle trackers 
The angle trackers also have a camera readout process and a servo process. The camera readout process is virtually 
identical to that of the fringe tracker. The servo process determines a position for the target image on the camera and 
calculates an error signal to be sent to the tip-tilt metrology sub-system to keep the target centered on the detector. The 
target is determined using either a centroid algorithm, in initial wide angle mode, or a quad cell algorithm once the target 
has been acquired. The state machine allows for idle and tracking states, and for search, semi-lock and lock in tracking. 
In addition to providing an error signal to the tip-tilt system, the angle tracker also offloads the absolute tip-tilt mirror 
position to the telescope tracking systems (in the case of the Keck telescopes, this means the A 0  system) at a lower rate 
than the main servo to keep the mirrors close to center. 

3.5. Tip-tilt metrology 
The tip-tilt metrology sub-system performs a higher bandwidth control of the internal beam train tip-tilt alignment than 
can be achieved by the angle tracker. The angle tracker works using detected starlight from the telescope, so is limited 
by the photon rate of the object. The tip-tilt sub-system uses a laser beacon near the beam combiner at the fringe tracker 
to illuminate a detector near the telescope at the other end of the beam train. Tip and tilt are calculated from the laser 



spot position on the detector, and fed back to a control mirror to keep the spot immobile. Targets are also added in from 
the angle trackers as mentioned above to keep the star centered on its detector (and hence ensure that light is correctly 
falling on the fringe trackers). The state machine for this sub-system uses the idle and track states. In the track state the 
state machine is very simple, allowing for a lock state if there is laser light falling on the detector. 

4. SEQUENCING 
The sub-systems described above run in hard real time, controlled by hardware clocks and with scheduling that requires 
the tasks complete in less time than required by the servo rate. This ensures optimum performance of the closed loop 
servos that are the primary concern of these sub-systems. These systems interface to a higher level of control that does 
not have to be run in hard real time, and thus has not been implemented in the RTC frame work. We refer to this level of 
control as sequencing, and it satisfies several requirements for the interferometer control system as indicated above: 
making the various subsystems act in concert, controlling internal calibrations for a single target object, and sequencing 
through a set of science and calibrator target objects. 

As indicated above the sequencing systems are implemented as a hierarchical structure. Fig. 1 shows the hierarchy of 
the sequencing components. The subsystem sequencers are instantiated as one per real time sub-system, and control 
their individual subsystem via commands and monitored telemetry. They ensure that the more generic commands 
received from the interferometer sequencer are correctly interpreted in the command set of the real time sub-systems, 
and that those systems enter the expected state as a consequence of the commands. They allow for faulted states if the 
sub-systems do not perform in the expected manner. The interferometer sequencer contains several modules that 
perform the correct coordination of the real time subsystems (and the telescope systems) to achieve a science 
observation, including sequencing through internal calibrations. These internal calibrations include commands to “slow” 
subsystems implemented in EPICS (e.g. commands to close shutters) as well as “fast” systems implemented in RTC. - /i Planning tools 
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Fig. 1 Sequencing hierarchy 

At the highest level the target list sequencer controls the interferometer sequencer and performs d e  function of cycling 
between science and calibration targets based on a target list supplied by planning toolsg. 

The interferometer sequencer, sub-system sequencers and target list sequencer are being implemented using the 
“Rhapsody” tool from I-Logixlo. This is a UML based tool with VPE interface which generates C++ code in an object 
oriented frame work. As mentioned, prototyping for sequencers is performed using scripting languages, and at present 
the target sequencer is implemented in Tclmk. Telescope sequencers and telescope subsystem sequencers are being 



implemented in the EPICS state notation language frame work. All these sequencers are currently implemented under 
the UNIX operating system. 

5. AUTO-ALIGNMENT 
As indicated above, an optical system as complicated as the Keck interferometer must have an auto-alignment system to 
allow quick reconfiguration, alignment checks and improvement during observations, improved accuracy and 
repeatability of alignment and improved human interface to optical alignment where the optics are located in a hostile 
environment (14000ft altitude). Details of the auto-alignment system are given by Van Belle, et al.". 

The auto-alignment control system is implemented in a very similar manner to the main instrument control system. 
Individual sub-systems (e.g. 2 axis mirror controllers) are implemented in EPICS, often with self contained sequencers 
for automated start up, slew to position, etc. These systems are real time and run under the VxWorks operating system. 
At a higher level, there are sub-system sequencers, in this case implemented in the EPICS State Notation Language 
(SNL) frame work, controlling the external command and telemetry interface. Above these is a further layer of 
sequencing that controls related subsystems to achieve auto-alignment on a single optic, again in EPICS SNL. A typical 
sequence involves turning on a stimulus, detecting a centroid for a target on a camera, and servoing the optic position to 
center the target. At the highest level, a sequencer is provided to step through all the optical elements in a beam train (or 
all those that need to be touched after, say, a reconfiguration) and perform an alignment. At present this top level 
sequencing is implemented as a prototype in Tclmk, but will shortly be ported to Rhapsody, with a java GUI. 

6. INTERFACE CONTROL 
It can be seen from the foregoing that the total number of interfaces in the interferometer control system is large, and that 
they are potentially of a diverse nature. There is inter-communication between systems running under different 
operating systems - VxWorks and UNIWLinux, and systems built using two very dissimilar frame works - RTC and 
EPICS, and there are a variety of languages used - C++, C, java, scripting languages. However, the interfaces can be 
placed into three groups, as described in the following three paragraphs. 

As well as having a native interface called channel access, the EPICS systems in use at WMKO have a legacy 
communications layer (KTL) based on keywords for both command and telemetry. Tcl/Tk has been extended to 
interface to KTL keywords. This layer is well engineered and flexible, allowing easy communication across operating 
systems and between CPUs, so we wished to continue to use it in the interferometer EPICS systems. Thus, all the 
interfaces between EPICS systems in the interferometer, and between interferometer EPICS systems and telescope 
EPICS systems are implemented in the KTL frame work. 

The RTC sub-systems at the real time (VxWorks) level (e.g. delay lines, f?inge tracker) have a built in inter-processor 
communications protocol (IPC) that is used, for example, for communication of fringe tracker targets to the delay lines. 
IPC works between CPUs on the same VME back plane, and between CPUs in separate VME crates provided the 
physical distance is not large (this is important in the interferometer, where the CPUs for the interferometer are far from 
those controlling telescope systems). 

For communication between the non-real time parts of RTC (e.g. GUIs, configuration data base), and from these parts to 
the real time sub-systems, a communications layer based on CORBA is provided. C O D A  is inherently object oriented, 
and so fits well in the RTC design philosophy. CORBA and its application to RTC is beyond the scope of this article 
(see Lockhart' for more information), but CORBA is designed to make communication interfaces more transparent by 
confining user accessible parts of the interface to a C++ like definition called IDL. CORBA ORBS are available for all 
the languages (C++, Java, Tcl, Python) and all the operating systems (VxWorks, Unifiinux) in use in the 
interferometer control system. We were thus able to construct a common interface based on IDL definitions for all RTC 
based systems. For example, one definition of telemetry exists that is used by all RTC based systems to report collected 
science data, systems health and system status. Use of CORBA thus makes interfacing between heterogeneous systems 
more straightforward and helps solve the interface complexity issues for the RTC based systems. 

Thus, controlling interface complexity in the interferometer Ss largely reduced to providing a simple interface between 
COMA and keyword based systems. Fortunately, much of this interface can also be confined to the sequencer level, 



and specifically most communication can be conveniently routed through the interferometer sequencer without loss of 
performance or introduction of data flow complexity. We have thus provided both a COMA based interface layer and a 
keyword based interface layer as parts of the Rhapsody frame work used to construct the interferometer sequencer. 
Thus, for example, this sequencer can command RTC systems based on CORBA method calls, and at the same time 
send keyword writes containing target information to telescope sequencers. No direct translation of keyword to CORJ3A 
systems is provided as the information needs in all cases to be processed through the sequencer, for it to provide its 
sequencing functionality. 

There are a very few cases where it does not make sense to route commands and data passing between RTC and EPICS 
based systems through the sequencer layer. An example is the mirror position offload commands generated by the angle 
tracker RTC sub-system being sent to the EPICS based A 0  sub-system. In all these cases the interface is very simple, 
requiring only that a simple position, or position pair be passed (in the form of a primitive integer or float type) from 
CORBA to KTL or vice versa. In these cases we have provided a simple thin translation layer to implement the 
communication. These layers are implemented on UNIX to avoid complications of scheduling in VxWorks, and are 
generic enough to handle the simple interface requirements of all these special cases. 

7. STATUS 
At the present time the control system for the Keck Interferometer has been developed to the extent needed to perform 
traditional visibility science measurements using the two Keck telescopes. The following sub-systems have been 
implemented: two delay lines (one for each beam train), two angle trackers, two tip-tilt metrology systems, and one 
fringe tracker. In addition, sequencing of these sub-systems, has been implemented and this sequencer interfaces to the 
telescope systems through a telescope sequencer to provide target information. Constant term metrology is used to 
measure the total path length variations along the whole beam train, and accelerometers are used to do likewise for the 
telescope optics. All optical elements that are routinely moved during set up, alignment, or calibrations (e.g. mirrors, 
shutters, retro-reflectors, etc) have been automated and are controlled by either the interferometer or auto-alignment 
sequencers, such that the interferometer can be run entirely remotely during normal operation. Extensive user interfaces 
have been provided in java and Tclnk that also allow easy remote operation. Indeed the full interferometer has often 
been operated in internal calibration mode from JPL during day time testing. 

Near term developments include: automated control of the Long Delay Lines to provide larger amounts of (fixed) optical 
path differencing to allow extended sky coverage, and inclusion of these into the auto-alignment system; development of 
the nulling beam combiner; and development of the differential phase mode of the instrument. 
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ABSTRACT 

The Keck Interferometer links the two 10m Keck Telescopes located atop Mauna Kea in Hawaii. It is the first 1Om 
class, fully A 0  equipped interferometer to enter operation. Further, it is the first large interferometer designed to be 
handed over from a design and implementation team to 'a separate operations team, and be used by astronomers who are 
not interferometer specialists. As such it offers unique challenges in reducing an extremely complex and powerful 
system to an apparently simple user interface, and providing a well engineered system that can be maintained by people 
who did not develop it. 

This paper gives an overview of the control system that has been implemented for the single baseline operation of the 
instrument, and indicates how this will be extended to allow control of the future modes of the instrument (nulling, 
differential phase and astrometry). 

The control system has several parts. One is for control of "slow" sub-systems, which is based in the EPICS 
architecture, already ubiquitous at the Keck Observatory. Another, used to control hard real time sub-systems, is based 
on a new infrastructure developed at JPL, programmed in C++, Java, and using COMA for communication. This 
infrastructure has been developed specifically with the problems of interferometric control in mind and is used in PL ' s  
flight testbeds as well as the Keck Interferometer. Finally, a user interface and high level control layer is in development 
using a variety of tools including UML based modeling in the Rhapsody tool (using C++ and CORBA), Java, and TcVTk 
for prototyping. 

Keywords: Interferometry, control system, real time control 

1. INTRODUCTION 

1.1. Overview 
The Keck Interferometric Array, as proposed, would use Michelson combination among the two Keck 10m telescopes 
along with four txoposed -per t w  . The two Kecks provide a baseline of 85 m in the NE direction. 
With the addition of the outri ers a range of baselines from 30 m to 135 m could be provided. For highest efficiency, 
all of the telescopes are phased e Kecks use adaptive optics, while the outri ers would use fast tip/tilt correction. 
Cophasing among baselines is provided using active fkinge tracking and active e ay lines; for off-source cophasing, a 
dual-star module will be installed at each telescope to bring the light from the source and a cophasing reference to the 
beam combining lab. The back-end science instruments of the interferometer include two-way combiners at 1.5-2.4 pn 
for astrometry, traditional visibility science, and cophasing; a proposed multi-way imaging combiner at 1.5-5 pn; and a 
nulling combiner at 10 pn in development. The Keck Interferometer is the first 1Om class, fully A 0  equipped 
interferometer to enter operation and is described in detail by Colavita and Wi~inowich'.~. The Keck Interferometer is 
an element in NASA's Origins Program'. 

-!e _IBg;h 

* Andrew.J.Both@ipl.nasa.p;ov; phone 1 818 354 1200; fax 1 818 393 4357; Jet Propulsion Laboratory, MS171-113, 
4800 Oak Grove Drive, Pasadena, CA 91109; **ktsubota@keck.hawaii.edu; phone 1 808 885 7887; fax 1 808 885 4464; 
W. M. Keck Observatory, 65- 1120 Mamalahoa Highway, Kamuela, HI 96743 



The science goals of the interferometer are the use of nulling interferometry to characterize zodiacal dust emission from 
nearby solar type stars as a precurser to the SIM and TPF planet finder missions (nulling mode); to detect hot Jupiters 
(Jovian sized planets in close orbit around their parent stars) using differential phase signals at varying detector 
wavelengths (DP mode); astrometric searches for planets down to Uranus mass around nearby stars (astrometry mode); 
and general purpose high resolution astronomical imaging of a variety of sources using the full array (imaging mode). 
For a detailed description of the science goals of the instrument see Colavita and Wizinowich’. 

1.2. Control system 
The control system for the Keck Interferometer is large and complicated. There are many parts and many interfaces, and 
it is being developed by two physically distant groups - JPL and WMKO, so there is ample potential for development of 
a system that is difficult to use and maintain. In addition, the system must be handed over from the development group 
(which for the interferometer itself, as opposed to telescope systems, is dominated by JPL personnel) to the operations 
group, which will contain none of the JPL developers. Further, the instrument must be of facility class, such that it may 
be used by astronomers who are not interferometry specialists. Thus, it is requirement that the instrument be, in fact, 
easy to use and maintain. In addition there are very tight requirements on the performance of the system to reach the 
challenging science goals of, for example, nulling detection of exo-zodiacal emission and differential phase 
measurements of hot Jupiters. These requirements are not easy to achieve. 

The main components of the control system are: 
Angle trackers, which keep the light from the telescopes falling on the entrance aperture to the fringe trackers, 
and keep the wavefronts that are being combined to form interference fringes parallel. 
Delay lines, which keep the optical path difference between any two telescope beams that are being combined 
the same to within very tight tolerances whilst tracking the moving delay cause by the sidereal motion of the 
target object. 
Metrology, which monitors and corrects for path length and tilt variations in the optical beam trains of the 
interferometer from the telescopes to the detectors 
Fringe trackers, which not only measure the fringe position and provide feed back to delay lines to maintain 
lock on the interference, but also provide the measurements for phase and visibility that form the science 
observations. 
Nulling and imaging cameras, which will measure the fringe quantities of interest to nulling and imaging 
science. 
Telescope systems, being the telescope and dome control themselves, and also target acquisition, adaptive 
optics (AO) control, and coudC beam train control (particularly for off axis beam trains used for the secondary 
star feed). 

For most of these sub-systems, several copies of functionally identical, but differently configured versions of the sub- 
systems are used together. For example, in a full imaging mode deployment there would be twelve delay lines operating 
simultaneously. There are numerous interfaces between the different sub-systems leading to a complicated data flow in 
the instrument. For example, as mentioned above, the fringe trackers measure the position of the interference fringes 
formed by combining the light from two telescopes. This position is fed back to the delay lines so as to keep the center 
of the interference fringe packet on the beam combiner, to maintain the highest fringe visibility. As another example the 
angle trackers feed back to the A 0  systems to keep the target object aligned with the detectors. 

The tolerances on the performance of the sub-systems are very demanding. Servos must run at fast rates, for example 
the delay lines internally servo their positions against a metrology source at 5kHz. The angle trackers and fringe trackers 
need to read out their camera hardware at close to the maximum allowable rate to provide enough bandwidth for fringe 
tracking control and angle tracking control to overcome the variability induced by the earth’s atmosphere and the 
internal variations in the instrument (fringe tracker frames at up to 500Hz and angle tracker frames at up to 1OOHz). The 
servo control must also be very precise. The fringe tracking must control the fringe position to much better than a 
wavelength of light (so to better than lOOnm or so), even though the delay lines are moving over 10s of meters during an 
observation. 

To successfully make science measurements with the instrument there must be a high degree of automation for the 
control system. This also naturally leads to a control system that is easy to use since the user need not have a detailed 



knowledge of the internal workmgs of the subsystems to achieve a set of science observations. The main reason for this 
automation requirement is that interferometry science requires high levels of careful calibration, thus we require: 

0 

0 

Fast switching between taking science data and taking internal calibration data. 
Fast switching between science target objects and objects of known visibility and phase for external fringe 
calibration. 
Consistency of calibration processes from targets to calibrator objects and in set up of target and calibrators. 

Automated sequencing of sub-system operation within a subsystem. 
Automated sequencing of sub-systems for coordinated operation of subsystems. 
Automated sequencing of targets presented to the instrument. 
Automated optical alignments of system and sub-system optical elements 

These requirements demand automation at several levels: 

This last automation requirement arises because the interferometer has many optical elements in each beam train from 
telescope to detector (many 10s of elements), and the total optical path is very long (many 10s of meters). Thus, manual 
alignment would be too time consuming and also not of sufficient accuracy. 

2. DESIGN APPROACH 

2.1. Software 
The design approach taken for the interferometer control system was driven by the above complexities and requirements. 
In this section we give an overview of the thinking behind the current and planned implementations. 

At WMKO extensive use is already made of the EPICS4 control framework. Many observatory sub-systems, including 
telescope control, are written using EPICS, and there are additional tool sets developed by WMKO which are layered on 
top of EPICS, for example a keyword interface layer (KTL). There thus exists a large body of expertise and knowledge 
at WMKO in the use of EPICS and many control systems are built on thoroughly tested device control modules built in 
EPICS. It was therefore decided wherever possible,-to make use of existing EPICS developments at WMKO for control 
of interferometer sub-systems, and to use WMKO expertise to extend existing control systems where necessary to 
control interferometer sub-systems that are similar to these existing control systems. This not only builds on existing 
infrastructure, but also helps the handover process as WMKO personnel are already familiar with the details of control 
systems for these interferometer elements, even if they were developed by JPL personnel. Care was taken to also make 
the development and deployment environment of EPICS systems at JPL adhere to WMKO policy and procedures. 

Much of the interferometer’s control system must run at rates too high to be implemented using EPICS. For these parts 
of the system we chose to implement control using the JPL developed RTC tool set5. The use of this tool set is described 
more fully below, however, here we note that the tool set allows a modular approach to design of the control system. 
We have many subsystems that are very similar in concept (for example, angle trackers and fringe trackers both read out 
a camera at high rate, compute a target, and send the target to another subsystem for actuation); we have many copies of 
the same type of subsystem, as noted above for example for the 12 delay lines needed in imaging mode. The object 
oriented nature of the RTC tool set allows easy modularisation of the elements of the control system to achieve this 
repeatability in design and in instantiation. 

In addition to being implemented as a modular system, the control system is also very hierarchical. This particularly 
applies to the sequencing type of control for the system and for the sub-systems. Sequencing occurs at all levels within 
in the control system: At the lowest level, the sub-systems sequence their internal states based on low level input from 
sensors. For example, is there light in the detector, then start to track the fiinges. At an intermediate level, sub-systems 
must be coordinated to act in concert. For example the observational target must be acquired by the angle trackers 
before the fringe trackers can try to track ii-inges. Also, the control system must cycle through various states ofthe sub- 
systems to achieve an observing sequence with the required internal calibrations. Finally at the highest level the control 
system must cycle through a predefined list of targets and calibration sources to achieve scientifically interesting 
measurements. The hierarchical nature of this sequencing allows us to implement it in a modular and hierarchical way, 
with separate control objects for each level of the hierarchy, linked by common format interfaces. This allows for 



separate development and testing, and implementation of prototypes for various levels along side more fully developed 
systems at other levels. 

For sub-systems developed within the EPICS framework, we also employed hierarchical development, layering 
sequencers on top of collections of individual sub-system modules, to implement, for example, the auto-alignment 
system. 

We made extensive use of prototyping and iterative development of sub-systems and sequencers. Sub-systems are 
developed as stand alone modules, then interfaced to other subsystems and sequencers. They are also extended or 
redesigned when further development of the instrument is instigated, for example, development of the precision modes 
of nulling and differential phase from basic control achieved fro visibility science. Sequencing almost always was 
implemented first in scripting languages, allowing rapid prototyping and development6. 

2.2. Hardware 
The above approach to software development: capitalizing on WMKO experience and making systems modular for ease 
of development and maintenance was also repeated for hardware. As far as possible we developed the control systems 
using hardware already in use at WMKO, or already in their planned upgrade path. We also repeated use of hardware 
between EPICS and RTC systems. This was fortunately aided by the fact that similar hardware and development 
environments to those previously used by WMKO were already in use at JPL for test bed development of the RTC tool 
kit. Thus, all our subsystems are deployed as Power PC control in a VME environment using the VxWorks operating 
system. We make extensive use of Industry Pack modules for D to A and A to D, and for digital IO, for example, and 
have reused and developed WMKO systems based on PMAC intelligent controllers. Many of the physical actuators 
used in the interferometer are identical to those already in use at WMKO, Newport 850G positioners, for example. 

3. SUB-SYSTEM CONTROL 

3.1. RTC controlled “fast” sub-systems 
All the hard real time sub-systems in the interferometer control system that must run at “fast” rates (i.e. more than about 
1OOHz) are built using the JPL developed RTC control system5. This control system development tool has been 
developed at JPL as part of the interferometer development and test bed program, of which the Keck interferometer 
project is part. The 
framework has been developed using C++, and Java, in both the VxWorks real time OS, and UNIX and Linux OS 
regimes. The framework is inherently object oriented. 

Thus, the framework has been developed with interferometer control especially in mind. 

The framework contains the following parts: 

0 

Real time control system frameworks in C++ for VxWorks. The frameworks include real time state machines, 
device drivers, and predefined interfaces for commanding and telemetry. 
Servers for distributing telemetry in C++ under UNIXLinux and an archiving system for capturing telemetry to 
disk, also in C++ for UNIXLinux. 
An extensive relational data base system for configuration management, including a java based GUI, used to 
maintain configurable parameters for the real time systems making for easy deployment of multiple copies of 
sub-system controllers with differently configured properties. Reconfiguration can occur at run time, and even 
“on the fly”. 
A flexible engineering GUI development tool kit developed in Java for UNIXILinuxTWindows, allowing on the 
fly configurable textual and graphical display of telemetry, and easy implementation of graphical command 
interfaces. 
Timing and scheduling control mechanisms and hardware for the real time processes. 0 

In the following sub-sections we give some details of the real time sub-systems developed for the Keck Interferometer 
using this framework. Each description is for a single instance of each sub-system, of which there are generally several 



in the interferometer system. All sub-systems are controlled independently by a single instance of their controlling 
software system, loaded with parameters from the configuration data base. 

3.2. Delay lines 
The delay lines are used to provide variable optical path length in each beam train from telescope to detectors, in 
response to sidereal motion of the target objects, and to provide an actuator for the fiinge tracker system. They are 
implemented as a 4 stage nested servo system (similar to the delay lines used at the Palomar Testbed Interferometer’): an 
inner loop controlling a fast PZT mounted small mirror, two intermediate loops controlling voice coils actuating entire 
optics assemblies, and an outer loop controlling a micro-stepper motor that drives the whole assembly along rails. The 
inner loop responds to feed back error signals measuring the actual position of the assembly along its rail path using 
laser metrology, with a bandwidth of about 500I-I~. Outer loops respond to this error at progressively lower bandwidths. 
Various targets are provided for the position of the assembly with regard to the laser metrology: a sidereal target from a 
higher level sequencer; a “continuous term” metrology signal, measuring the total path length of the beam train of which 
this delay line forms a part, from the fringe tracker to the telescope; and a measurement of the change in optical path 
length caused by motion of the telescope optics, measured using accelerometers mounted on the telescope. The closed 
loop target from the fringe tracker is either an actual error signal from a measurement of fringe position; or a search 
target if the tracker detects no fringes. 

In common with all the real time control sub-systems, the RTC framework has been used to implement a state machine 
that allows the delay lines to be either “idle” (measuring sensor input, but not moving closed loop), or tracking. In 
tracking, the sub-system can be in a variety of states, in this case: slewing (moving rapidly to a new target), or locked 
(closed loop tracking on error signal). The RTC framework allows easy implementation of the state machine that 
.defines these states and controls transition between them based on user input and sensor values. 

3.3. Fringe trackers 
The fringe tracker is implemented as two separate processes running on the same CPU. One process controls the camera 
readout, and one performs the servo calculations. The camera readout process is very simple, loading the appropriate 
clock pattern to read out the array and setting up the rate at which the pattern is applied, then placing the results of the 
readout into local memory. The servo process obtains the read out pixels from the camera, and sends a calculated target 
to the delay line sub-systems to keep the fringe packet centered on the beam combiner. The calculation involves 
determining a fringe phase from a white light pixel fiom one output of the beam combiner, and a fringe position group 
delay determined from a dispersed spectrum from the other output, then combining these two. Details of this process 
can be found in Vashist’. The state machine for the fringe tracker allows for idle and tracking states. In tracking the 
process can be searching (sending a linear spiral search target to the delay lines instead of an error signal), semi-lock 
(confirniing the existence of suspected fringes), or lock (confrmed detection of fringes, and servoing delay lines). 

3.4. Angle trackers 
The angle trackers also have a camera readout process and a servo process. The camera readout process is virtually 
identical to that of the fringe tracker. The servo process determines a position for the target image on the camera and 
calculates an error signal to be sent to the tip-tilt metrology sub-system to keep the target centered on the detector. The 
target is determined using either a centroid algorithm, in initial wide angle mode, or a quad cell algorithm once the target 
has been acquired. The state machine allows for idle and tracking states, and for search, semi-lock and lock in tracking. 
In addition to providing an error signal to the tip-tilt system, the angle tracker also offloads the absolute tip-tilt mirror 
position to the telescope tracking systems (in the case of the Keck telescopes, this means the A 0  system) at a lower rate 
than the main servo to keep the mirrors close to center. 

3.5. Tip-tilt metrology 
The tip-tilt metrology sub-system performs a higher bandwidth control of the internal beam train tip-tilt alignment than 
can be achieved by the angle tracker. The angle tracker works using detected starlight from the telescope, so is limited 
by the photon rate of the object. The tip-tilt sub-system uses a laser beacon near the beam combiner at the fringe tracker 
to illuminate a detector near the telescope at the other end of the beam train. Tip and tilt are calculated from the laser . 



spot position on the detector, and fed back to a control mirror to keep the spot immobile. Targets are also added in from 
the angle trackers as mentioned above to keep the star centered on its detector (and hence ensure that light is correctly 
falling on the fringe trackers). The state machine for this sub-system uses the idle and track states. In the track state the 
state machine is very simple, allowing for a lock state if there is laser light falling on the detector. 

4. SEQUENCING 
The sub-systems described above run in hard real time, controlled by hardware clocks and with scheduling that requires 
the tasks complete in less time than required by the servo rate. This ensures optimum performance of the closed loop 
servos that are the primary concern of these sub-systems. These systems interface to a higher level of control that does 
not have to be run in hard real time, and thus has not been implemented in the RTC frame work. We refer to this level of 
control as sequencing, and it satisfies several requirements for the interferometer control system as indicated above: 
making the various subsystems act in concert, controlling internal calibrations for a single target object, and sequencing 
through a set of science and calibrator target objects. 

As indicated above the sequencing systems are implemented as a hierarchical structure. Fig. 1 shows the hierarchy of 
the sequencing components. The subsystem sequencers are instantiated as one per real time sub-system, and control 
their individual subsystem via commands and monitored telemetry. They ensure that the more generic commands 
received from the interferometer sequencer are correctly interpreted in the command set of the real time sub-systems, 
and that those systems enter the expected state as a consequence of the commands. They allow for faulted states if the 
sub-systems do not perform in the expected manner. The interferometer sequencer contains several modules that 
perform the correct coordination of the real time subsystems (and the telescope systems) to achieve a science 
observation, including sequencing through internal calibrations. These intemal calibrations include commands to “slow” 
subsystems implemented in EPICS (e.g. commands to close shutters) as well as “fast” systems implemented in RTC. 

, ,/ Planning tools 
” 

Target List 

& status 
\ Targets& 1 status 

I I 

A 
J status 1 A 

A 
Commands Commands 

& status 

EPICS subsystem 
RTC subsystem 

L 

PICS subsystem I 
Fig. 1 Sequencing hierarchy 

At the highest level the target list sequencer controls the interferometer sequencer and performs 
between science and calibration targets based on a target list supplied by planning toolsg. 

he function of cycling 

The interferometer sequencer, sub-system sequencers and target list sequencer are being implemented using the 
“Rhapsody” tool from I-Logix”. This is a UML based tool with W E  interface which generates C++ code in an object 
oriented frame work. As mentioned, prototyping for sequencers is performed using scripting languages, and at present 
the target sequencer is implemented in Tclmk. Telescope sequencers and telescope subsystem sequencers are being 



implemented in the EPICS state notation language frame work. All these sequencers are currently implemented under 
the UNIX operating system. 

5. AUTO-ALIGNMENT 
As indicated above, an optical system as complicated as the Keck interferometer must have an auto-alignment system to 
allow quick reconfiguration, alignment checks and improvement during observations, improved accuracy and 
repeatability of alignment and improved human interface to optical alignment where the optics are located in a hostile 
environment (14000ft altitude). Details of the auto-alignment system are given by Van Belle, et al.". 

The auto-alignment control system is implemented in a very similar manner to the main instrument control system. 
Individual sub-systems (e.g. 2 axis mirror controllers) are implemented in EPICS, often with self contained sequencers 
for automated start up, slew to position, etc. These systems are real time and run under the VxWorks operating system. 
At a higher level, there are sub-system sequencers, in this case implemented in the EPICS State Notation Language 
(SNL) frame work, controlling the external command and telemetry interface. Above these is a further layer of 
sequencing that controls related subsystems to achieve auto-alignment on a single optic, again in EPICS SNL. A typical 
sequence involves turning on a stimulus, detecting a centroid for a target on a camera, and servoing the optic position to 
center the target. At the highest level, a sequencer is provided to step through all the optical elements in a beam train (or 
all those that need to be touched after, say, a reconfiguration) and perform an alignment. At present this top level 
sequencing is implemented as a prototype in Tclmk, but will shortly be ported to Rhapsody, with a java GUI. 

. 6. INTERFACE CONTROL 
It can be seen from the foregoing that the total number of interfaces in the interferometer control system is large, and that 
they are potentially of a diverse nature. There is inter-communication between systems running under different 
operating systems - VxWorks and UNWLinux, and systems built using two very dissimilar frame works - RTC and 
EPICS, and there are a variety of languages used - C++, C, java, scripting languages. However, the interfaces can be 
placed into three groups, as described in the following three paragraphs. 

As well as having a native interface called channel access, the EPICS systems in use at WMKO have a legacy 
communications layer (KTL) based on keywords for both command and telemetry. T c n k  has been extended to 
interface to KTL keywords. This layer is well engineered and flexible, allowing easy communication across operating 
systems and between CPUs, so we wished to continue to use it in the interferometer EPICS systems. Thus, all the 
interfaces between EPICS systems in the interferometer, and between interferometer EPICS systems and telescope 
EPICS systems are implemented in the KTL frame work. 

The RTC sub-systems at the real time (VxWorks) level (e.g. delay lines, fringe tracker) have a built in inter-processor 
communications protocol (IPC) that is used, for example, for communication of fringe tracker targets to the delay lines. 
IPC works between CPUs on the same VME back plane, and between CPUs in separate VME crates provided the 
physical distance is not large (this is important in the interferometer, where the CPUs for the interferometer are far from 
those controlling telescope systems). 

For communication between the non-real time parts of RTC (e.g. GUS, configuration data base), and from these parts to 
the real time sub-systems, a communications layer based on CORBA is provided. CORBA is inherently object oriented, 
and so fits well in the RTC design philosophy. CORBA and its application to RTC is beyond the scope of this article 
(see Lockhart' for more information), but CORBA.is designed to make communication interfaces more transparent by 
confining user accessible parts of the interface to a C++ like definition called IDL. COMA ORBS are available for all 
the languages (C++, Java, Tcl, Python) and all the operating systems (VxWorks, UnixLinux) in use in the 
interferometer control system. We were thus able to construct a common interface based on IDL definitions for all RTC 
based systems. For example, one definition of telemetry exists that is used by all RTC based systems to report collected 
science data, systems health and system status. Use of C O M A  thus makes interfacing between heterogeneous systems 
more straightforward and helps solve the interface complexity issues for the RTC based systems. 

Thus, controlling interface complexity in the interferometer i.s largely reduced to providing a simple interface between 
CORBA and keyword based systems. Fortunately, much of this interface can also be confined to the sequencer level, 



and specifically most communication can be conveniently routed through the interferometer sequencer without loss of 
performance or introduction of data flow complexity. We have thus provided both a COMA based interface layer and a 
keyword based interface layer as parts of the Rhapsody frame work used to construct the interferometer sequencer. 
Thus, for example, this sequencer can command RTC systems based on COMA method calls, and at the same time 
send keyword writes containing target information to telescope sequencers. No direct translation of keyword to CORBA 
systems is provided as the information needs in all cases to be processed through the sequencer, for it to provide its 
sequencing functionality. 

There are a very few cases where it does not make sense to route commands and data passing between RTC and EPICS 
based systems through the sequencer layer. An example is the mirror position offload commands generated by the angle 
tracker RTC sub-system being sent to the EPICS based A 0  sub-system. In all these cases the interface is very simple, 
requiring only that a simple position, or position pair be passed (in the form of a primitive integer or float type) from 
C O M A  to KTL or vice versa. In these cases we have provided a simple thin translation layer to implement the 
communication. These layers are implemented on UNIX to avoid complications of scheduling in VxWorks, and are 
generic enough to handle the simple interface requirements of all these special cases. 

7. STATUS 
At the present time the control system for the Keck Interferometer has been developed to the extent needed to perform 
traditional visibility science measurements using the two Keck telescopes. The following sub-systems have been 
implemented: two delay lines (one for each beam train), two angle trackers, two tip-tilt metrology systems, and one 
fringe tracker. In addition, sequencing of these sub-systems has been implemented and this sequencer interfaces to the 
telescope systems through a telescope sequencer to provide target information. Constant term metrology is used to 
measure the total path length variations along the whole beam train, and accelerometers are used to do likewise for the 
telescope optics. All optical elements that are routinely moved during set up, alignment, or calibrations (e.g. mirrors, 
shutters, retro-reflectors, etc) have been automated and are controlled by either the interferometer or auto-alignment 
sequencers, such that the interferometer can be run entirely remotely during normal operation. Extensive user interfaces 
have been provided in java and TclRk that also allow easy remote operation. Indeed the full interferometer has often 
been operated in internal calibration mode from JPL during day time testing. 

Near term developments include: automated control of the Long Delay Lines to provide larger amounts of (fixed) optical 
path differencing to allow extended sky coverage, and inclusion of these into the auto-alignment system; development of 
the nulling beam combiner; and development of the differential phase mode of the instrument. 
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